Учебник. Элементы релятивисткой динамики



Элементы релятивисткой динамики

Принцип относительности Эйнштейна утверждает инвариантность всех законов природы по отношению к переходу от одной инерциальной системе отсчета к другой. Это значит, что все уравнения, описывающие законы природы, должны быть инвариантны относительно преобразований Лоренца. К моменту создания СТО теория, удовлетворяющая этому условию, уже существовала – это электродинамика Максвелла. Однако уравнения классической механики Ньютона оказались неинвариантными относительно преобразований Лоренца, и поэтому СТО потребовала пересмотра и уточнения законов механики.

В основу такого пересмотра Эйнштейн положил требования выполнимости закона сохранения импульса и закона сохранения энергии в замкнутых системах. Для того, чтобы закон сохранения импульса выполнялся во всех инерциальных системах отсчета, оказалось необходимым изменить определение импульса тела. Вместо классического импульса p =m υ в СТО релятивистский импульс p тела с массой m, движущегося со скоростью υ , записывается в виде p = m υ 1- υ 2 / c 2 = m υ 1- β 2 .

Если принять такое определение, то закон сохранения суммарного импульса взаимодействующих частиц (например, при соударениях) будет выполняться во всех инерциальных системах, связанных преобразованиями Лоренца. При β → 0 релятивистский импульс переходит в классический. Масса m, входящая в выражение для импульса, есть фундаментальная характеристика частицы, не зависящая от выбора инерциальной системы отсчета, а, следовательно, и от скорости ее движения. (Во многих учебниках прошлых лет ее было принято обозначать буквой m0 и называть массой покоя. Кроме того, вводилась так называемая релятивистская масса, равная m 0 / 1- β 2 , зависящая от скорости движения тела. Современная физика постепенно отказывается от этой терминологии).

Основной закон релятивистской динамики материальной точки записывается так же, как и второй закон Ньютона: F = d p dt , но только в СТО под p понимается релятивистский импульс частицы. Следовательно, F = d dt ( m υ 1- υ 2 / c 2 ) .

Так как релятивистский импульс не пропорционален скорости частицы, скорость его изменения не будет прямо пропорциональна ускорению. Поэтому постоянная по модулю и направлению сила не вызывает равноускоренного движения. Например, в случае одномерного движения вдоль оси x ускорение частицы a= dυ dt под действием постоянной силы оказывается равным a= F m ( 1- υ 2 c 2 ) 3 2 .

Если скорость классической частицы беспредельно растет под действием постоянной силы, то скорость релятивистской частицы не может превысить скорость света c в пустоте. В релятивистской механике, так же, как и в механике Ньютона, выполняется закон сохранения энергии. Кинетическая энергия тела Ek определяется через работу внешней силы, необходимую для сообщения телу заданной скорости. Чтобы разогнать частицу массы m из состояния покоя до скорости υ0 под действием постоянной силы F, эта сила должна совершить работу A= Fċdx = Fċυ ċdt= υ dt ( 1- υ 2 / c 2 ) 3/2 .

Поскольку a dt = dυ, окончательно можно записать E k =A= 0 υ 0 m υ dυ (1- υ 2 / c 2 ) 3/2 .

Вычисление этого интеграла приводит к следующему выражению для кинетической энергии (индекс «ноль» при скорости υ опущен): E k = m c 2 1- υ 2 / c 2 -m c 2 .

Эйнштейн интерпретировал первый член в правой части этого выражения как полную энергию E движущийся частицы, а второй член как энергию покоя E0: E= m c 2 1- υ 2 / c 2 , E0 = mc2.

Кинетическая энергия Ek релятивистской динамики есть разность между полной энергией E тела и его энергией покоя E0: Ek = E – E0.

Рис. 4.5.1 иллюстрирует изменение кинетической энергии частицы в зависимости от ее скорости для частиц, подчиняющихся классическому и релятивистскому законам.

Зависимость кинетической энергии от скорости для релятивистской (a) и классической (b) частиц. При υ << c оба закона совпадают

Чрезвычайно важный вывод релятивистской механики заключается в том, что находящаяся в покое масса m содержит огромный запас энергии. Это утверждение имеет разнообразные практические применения, включая использование ядерной энергии. Если масса частицы или системы частиц уменьшилась на Δm, то при этом должна выделиться энергия ΔE = Δm ċ c2. Многочисленные прямые эксперименты дают убедительные доказательства существования энергии покоя. Первое экспериментальное подтверждение правильности соотношения Эйнштейна, связывающего массу и энергию, было получено при сравнении энергии, высвобождающейся при радиоактивном распаде, с разностью масс исходного ядра и конечных продуктов. Например, при бета-распаде свободного нейтрона появляется протон, электрон и еще одна частица с нулевой массой – антинейтрино: np+ e - + ν ˜ .

При этом суммарная кинетическая энергия конечных продуктов равна 1,25ċ10–13 Дж. Масса нейтрона превышает суммарную массу протона и электрона на Δm = 13,9ċ10–31 кг. Такому уменьшению массы должна соответствовать энергия ΔE = Δm ċ c2 = 1,25ċ10–13 Дж, равная наблюдаемой кинетической энергией продуктов распада.

Чтобы возникло ощущение масштабов этого явления в макромире, рассмотрим такой пример. При взрыве 1 т тринитротолуола высвобождается энергия 4,2ċ109 Дж. При взрыве мегатонной бомбы выделится энергия 4,2ċ1015 Дж. Соответствующая этой громадной энергии масса m = E / c2 оказывается равной всего 46 г. Таким образом, при взрыве ядерной мегатонной бомбы масса ядерной «взрывчатки» должна уменьшится примерно на 50 г. Полная первоначальная масса водородной бомбы, эквивалентной по мощности 1 мегатонне тринитротолуола, примерно в 1000 раз больше и составляет около 50 кг.

Закон пропорциональности массы и энергии является одним из самых важных выводов СТО. Масса и энергия являются различными свойствами материи. Масса тела характеризует его инертность, а также способность тела вступать в гравитационное взаимодействие с другими телами. Важнейшим свойством энергии является ее способность превращаться из одной формы в другую в эквивалентных количествах при различных физических процессах – в этом заключается содержание закона сохранения энергии. Пропорциональность массы и энергии является выражением внутренней сущности материи. Формула Эйнштейна E0 = mc2 выражает фундаментальный закон природы, который принято называть законом взаимосвязи массы и энергии.

Комбинируя выражение (*) для релятивистского импульса p и выражение (**) для полной энергии E, можно получить соотношение, связывающее эти величины. Для этого удобно формулы (*) и (**) переписать в следующем виде: ( p 2 mc ) 2 = υ 2 / c 2 1- υ 2 / c 2 , ( E m c 2 ) 2 = 1 1- υ 2 / c 2 .

Вычитая почленно, можно получить E2 = (mc2)2 + (pc)2.

Отсюда еще раз следует, что для покоящихся частиц (p = 0) E = E0 = mc2.

Полученное соотношение показывает, что частица может иметь энергию и импульс, но не иметь массы (m = 0). Такие частицы называются безмассовыми. Для безмассовых частиц связь между энергией и импульсом выражается простым соотношением E = pc.

К безмассовым частицам относятся фотоныкванты электромагнитного излучения и, возможно, нейтрино. Безмассовые частицы не могут существовать в состоянии покоя, во всех инерциальных системах отсчета они движутся с предельной скоростью c.





 

Пневматический краскопульт в ассортименте. Инструмент FIT прослужит вам долго
instrument-fit.ru
© Физикон, 1999-2015