Учебник. Квазистационарные процессы. RC- и RL-цепи



Квазистационарные процессы. RC- и RL-цепи

В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно, то есть неизменно во времени. Электромагнитное поле в таких цепях состоит из электростатического поля неподвижных зарядов и магнитного поля постоянных токов. Эти поля существуют независимо друг от друга.

Если на каком-то участке цепи происходят изменения силы тока или напряжения, то другие участки цепи могут «почувствовать» эти изменения только через некоторое время, которое по порядку величины равно времени τ распространения электромагнитного возмущения от одной точки цепи к другой. Так как электромагнитные возмущения распространяются с конечной скоростью, равной скорости света c , то τ l c , где l – расстояние между наиболее удаленными точками цепи. Если это время τ много меньше длительности процессов, происходящих в цепи, то можно считать, что в каждый момент времени сила тока одинакова во всех последовательно соединенных участках цепи. Процессы такого рода в электрических цепях а также сами цепи, называются квазистационарными.

Квазистационарные процессы можно исследовать с помощью законов постоянного тока, если применять эти законы к мгновенным значениям сил токов и напряжений на участках цепи.

Из-за огромного значения скорости света время установления в цепи электрического равновесия оказывается весьма малым. Поэтому к квазистационарным можно отнести многие достаточно быстрые в обычном смысле процессы. Например, быстрые колебания в радиотехнических цепях с частотами порядка миллиона колебаний в секунду и даже выше очень часто еще можно рассматривать как квазистационарные.

Простыми примерами квазистационарных процессов могут служить процессы, происходящие в RC- и RL-цепях при подключении и отключении источника постоянного тока.

На рис. 2.1.1 изображена электрическая цепь, состоящая из конденсатора с емкостью C, резистора с сопротивлением R и источника тока с ЭДС, равной ℰ.

Цепи зарядки и разрядки конденсатора через резистор

Если замкнуть ключ K в положение 1, то начинается процесс зарядки конденсатора через резистор. Для квазистационарной цепи по закону Ома можно записать: RJ + U = ℰ, где J – мгновенное значение силы тока в цепи, U – мгновенное значение напряжения на конденсаторе. Сила тока J в цепи равна изменению заряда q конденсатора в единицу времени: J= dq dt . Напряжение U на конденсаторе в любой момент времени равно q / C. Из этих соотношений следует C dU dt +U= .

Мы получили дифференциальное уравнение, описывающее процесс зарядки конденсатора. Если конденсатор вначале не был заряжен, то решение этого уравнения имеет вид U ( t ) =ℰ [-exp( -tτ ) ] , где τ = RC – так называемая постоянная времени цепи, состоящей из резистора и конденсатора. Величина τ является характеристикой скорости процесса. При t → ∞, U (t) → ℰ. Процесс зарядки конденсатора через резистор изображен на рис. 2.1.2 (I).

Зарядка (I) и разрядка (II) конденсатора через резистор

Если после того, как конденсатор полностью зарядился до напряжения ℰ, ключ K перебросить в положение 2, то начнется процесс разрядки. Внешний источник тока в цепи разрядки отсутствует (ℰ = 0). Процесс разрядки описывается выражением U (t) = exp (–t / τ).

Зависимость U (t) в процессе разрядки изображена на рис. 2.1.2 (II). При t = τ напряжение на конденсаторе уменьшается в e ≈ 2,7 раз.

Аналогично протекают процессы в цепи, содержащей катушку с индуктивностью L и резистор с сопротивлением R (рис. 2.1.3).

Цепь, содержащая катушку с индуктивностью L, резистор с сопротивлением R и источник тока с ЭДС, равной ℰ

Если в цепи, изображенной на рис. 2.1.3, ключ K сначала был замкнут, а затем внезапно разомкнут, то начнется процесс установления тока. Следует обратить внимание на то, что в схему последовательно с источником тока включен резистор r с малым сопротивлением, чтобы при замкнутом ключе K батарея не оказалась закороченной. Поскольку r << R, при написании уравнения для процесса установления тока этим сопротивлением можно принебречь. Этот процесс описывается уравнением RJ=-L dJ dt .

Это уравнение по виду совпадает с уравнением, описывающим зарядку конденсатора, только теперь переменной величиной является сила тока J. Решение этого уравнения имеет вид J ( t ) = R  [ -exp( -tτ ) ] , где постоянная времени τ = L / R. Аналогичным образом можно получить закон убывания тока в RL-цепи после замыкания ключа K: J ( t ) = R exp( -tτ ) .

Следует отметить, что процессы в RC- и RL-цепях аналогичны механическим процессам при движении тела в вязкой жидкости.

RC-контур RL-контур
 
купить аттестат об окончании 11 классов в Алматы сайт
almaty.diplom-register.com

 

 

 

 

 

 

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".

 

 

 

© Физикон, 1999-2024