Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями.
Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими. Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.
Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω0.
Если частота ω0 свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника.
Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δt. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.
Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока.
Рассмотрим последовательный колебательный контур, то есть RLC-цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):
Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому для мгновенных значений токов и напряжений можно записать закон Ома:
Величина – это ЭДС самоиндукции катушки, перенесенная с изменением знака из правой части уравнения в левую. Эту величину принято называть напряжением на катушке индуктивности.
Уравнение вынужденных колебаний можно записать в виде
На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).
Длины векторов на диаграмме равны амплитудам A и B колебаний, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом Δφ = φ1 – φ2. Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:
Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.
Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением R, конденсатору с емкостью C и катушки с индуктивностью L. Во всех трех случаях напряжение на резисторе, конденсаторе и катушке равно напряжению источника переменного тока.
1. Резистор в цепи переменного тока
Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением
Фазовый сдвиг между током и напряжением на резисторе равен нулю.
Физическая величина R называется активным сопротивлением резистора.
2. Конденсатор в цепи переменного тока
Соотношение между амплитудами тока IC и напряжения UC:
Ток опережает по фазе напряжение на угол
Физическая величина называется емкостным сопротивлением конденсатора.
3. Катушка в цепи переменного тока
Соотношение между амплитудами тока IL и напряжения UL:
Ток отстает по фазе от напряжения на угол
Физическая величина XL = ωL называется индуктивным сопротивлением катушки.
Теперь можно построить векторную диаграмму для последовательного RLC-контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через I0. Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги. Векторная диаграмма для последовательного RLC-контура изображена на рис. 2.3.2.
Векторная диаграмма на рис. 2.3.2 построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.
Из рисунка видно, что
Из выражения для I0 видно, что амплитуда тока принимает максимальное значение при условии
Явление возрастания амплитуды колебаний тока при совпадении частоты ω колебаний внешнего источника с собственной частотой ω0 электрической цепи называется электрическим резонансом. При резонансе
Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной RLC-цепи называется резонансом напряжений. Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов R, L и C (так называемый резонанс токов).
При последовательном резонансе (ω = ω0) амплитуды UC и UL напряжений на конденсаторе и катушке резко возрастают:
В § 2.2 было введено понятие добротности RLC-контура:
Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в Q раз превышают амплитуду напряжения внешнего источника.
Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды UC напряжения на конденсаторе к амплитуде ℰ0 напряжения источника от его частоты ω для различных значений добротности Q. Кривые на рис. 2.3.3 называются резонансными кривыми.
Можно показать, что максимум резонансных кривых для контуров с низкой добротностью несколько сдвинуты в область низких частот.
Заказать цветы оптом в Питере |
9046065.ru |