Учебник. Закон Ома для цепи переменного тока. Мощность



Закон Ома для цепи переменного тока. Мощность

В § 2.3 были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности: R I R = U R ;    1 ωC I C = U C ;    ωL I L = U L .

Эти соотношения во виду напоминают закон Ома для участка цепи постоянного тока, но только теперь в них входят не значения постоянных токов и напряжений на участке цепи, а амплитудные значения переменных токов и напряжений.

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, 1 ωC и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.

При протекании переменного тока по участку цепи электромагнитное поле совершает работу, и в цепи выделяется джоулево тепло. Мгновенная мощность в цепи переменного тока равна произведению мгновенных значений тока и напряжения: p = J ċ u. Практический интерес представляет среднее за период переменного тока значение мощности P= P ср = I 0  U 0 cosωtcos( ωt+φ ) ¯ .

Здесь I0 и U0 – амплитудные значения тока и напряжения на данном участке цепи, φ – фазовый сдвиг между током и напряжением. Черта означает знак усреднения. Если участок цепи содержит только резистор с сопротивлением R, то фазовый сдвиг φ = 0: P R = I R U R cos 2 ωt ¯ = I R U R 2 = I R 2 R 2 .

Для того, чтобы это выражение по виду совпадало с формулой для мощности постоянного тока, вводятся понятия действующих или эффективных значений силы тока и напряжения: I д = I 0 2 ;    U д = U 0 2 .

Средняя мощность переменного тока на участке цепи, содержащем резистор, равна P R = I д U д .

Если участок цепи содержит только конденсатор емкости C, то фазовый сдвиг между током и напряжением φ= π 2 . Поэтому P C = I C U C cosωtcos( ωt+ π 2 ) ¯ = I C U C cosωt(  -sin ωt ) ¯ =0.

Аналогично можно показать, что PL = 0.

Таким образом, мощность в цепи переменного тока выделяется только на активном сопротивлении. Средняя мощность переменного тока на конденсаторе и катушке индуктивности равна нулю.

Рассмотрим теперь электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки. Цепь подключена к источнику переменного тока частоты ω. На всех последовательно соединенных участках цепи протекает один и тот же ток. Между напряжением внешнего источника e (t) и током J (t) возникает фазовый сдвиг на некоторый угол φ. Поэтому можно записать J (t) = I0 cos ωt;   e (t) = 0 cos (ωt + φ).

Такая запись мгновенных значений тока и напряжения соответствует построениям на векторной диаграмме (рис. 2.3.2). Средняя мощность, развиваемая источником переменного тока, равна P= I 0 0 cosωtcos( ωt+φ ) ¯ = I 0 0 2 cosφ= I д д cosφ .

Как видно из векторной диаграммы, UR = 0 · cos φ, поэтому P= I 0 U R 2 . Следовательно, вся мощность, развиваемая источником, выделяется в виде джоулева тепла на резисторе, что подтверждает сделанный ранее вывод.

В § 2.3 было выведено соотношение между амплитудами тока I0 и напряжения ℰ0 для последовательной RLC-цепи: I 0 = 0 R 2 + ( ωL- 1 ωC ) 2 .

Величину Z= R 2 + ( ωL- 1 ωC ) 2 называют полным сопротивлением цепи переменного тока. Формулу, выражающую связь между амплитудными значениями тока и напряжения в цепи, можно записать в виде ZI0 = 0.

Это соотношение называют законом Ома для цепи переменного тока. Формулы (*), приведенные в начале этого параграфа, выражают частные случаи закона Ома (**).

Понятие полного сопротивления играет важную роль при расчетах цепей переменного тока. Для определения полного сопротивления цепи во многих случаях удобно использовать наглядный метод векторных диаграмм. Рассмотрим в качестве примера параллельный RLC-контур, подключенный к внешнему источнику переменного тока (рис. 2.4.1).

Параллельный RLC-контур

При построении векторной диаграммы следует учесть, что при параллельном соединении напряжение на всех элементах R, C и L одно и то же и равно напряжению внешнего источника. Токи, текущие в разных ветвях цепи, отличаются не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Поэтому полное сопротивление цепи нельзя вычислить по законам параллельного соединения цепей постоянного тока. Векторная диаграмма для параллельного RLC-контура изображена на рис. 2.4.2.

Векторная диаграмма для параллельного RLC-контура

Из диаграммы следует: I 0 = 0 (1R) 2 + (ωL- 1 ωC ) 2 .

Поэтому полное сопротивление параллельного RLC-контура выражается соотношением Z= 1 (1R) 2 + (ωL- 1 ωC ) 2 .

При параллельном резонансе (ω2 = 1 / LC) полное сопротивление цепи принимает максимальное значение, равное активному сопротивлению резистора: Z = Zmax = R.

Фазовый сдвиг φ между током и напряжением при параллельном резонансе равен нулю.

 

 

 

 

 

 

 

 

Смотрите также: Математика, Английский язык, Химия, Биология, Физика, География, Астрономия.
А также: библиотека ЭОРов и образовательный онлайн-сервис с тысячами интерактивных работ "Облако знаний".

 

 

 

© Физикон, 1999-2024